

Thinking about A New Mechanism for Huge Page Management
Xinyu Li1, Lei Liu

1, Shengjie Yang1, Lu Peng2, Jiefan Qiu3
1Sys-Inventor Lab, SKLCA, ICT, CAS; 2LSU; 3ZJUT

ABSTRACT
The Huge page mechanism is proposed to reduce the TLB
misses and benefit the overall system performance. On the
system with large memory capacity, using huge pages is an
ideal choice to alleviate the virtual-to-physical address
translation overheads. However, using huge pages might
incur expensive memory compaction operations due to
memory fragmentation problem, and lead to memory
bloating as many huge pages are often underutilized in
practice.

In order to address these problems, in this paper, we
propose SysMon-H, a sampling module in OS kernel,
which is able to obtain the huge page utilization in a low
overhead for both cloud and desktop applications.
Furthermore, we propose H-Policy, a huge page
management policy, which splits the underutilized huge
pages to mitigate the memory bloating or promotes the base
4KB pages to huge pages for reducing the TLB misses
based on the information provided by SysMon-H. In our
prototype, SysMon-H and H-Policy work cooperatively in
OS kernel.

1 INTRODUCTION
We are in the era of big data and cloud computing. In this
era, applications have rapidly increasing memory footprints
and demand for throughput than ever before [20,22,27]. For
example, the widely used cloud workloads, e.g.,
Memcached and Redis, have several hundred GB/TB-level
memory demands on YouTube, Facebook and Twitter’s
data center [2,6]. Meanwhile, designing an efficient
memory management mechanism for computer systems
with a large memory capacity is always challenging the
existing Operating System (OS) [7,10,14,24].
 Chasing a high overall system performance, previous
studies [8,10,24] propose schemes on using huge page for

cloud computing environments. Huge page helps to reduce
the number of TLB misses and thus benefits the overall
system performance [10,14,16]. Modern architecture has
TLB entries for huge pages. For example, The Intel
Nehalem, Sandy Bridge/Skylake series processors now
have 512/1536 TLB entries for huge pages [9]. Yet, the
huge page is not always a free lunch, and the OS is now
wrestling with the following challenges. (1) In reality, the
huge page is often with low utilization (the term
“utilization” stands for the fraction of a memory page that
is actually used for data storage), incurring memory
bloating and thereby wasting memory. Previous efforts [2,
16] show, in Redis, using huge page wastes 69% memory
compared with using only base 4KB page. (2) Allocating
huge pages often incur significant overheads on memory
compaction. As system ages, physical memory is
fragmented, thus OS has to compact physical memory to
create contiguous regions for huge page allocations. In
many cases, as some kernel-level pages cannot be moved,
OS fails to have contiguous regions for allocating huge
pages [11,12,24]. Even the compaction is successful, the
overheads are ineligible [12]. Due to these problems, some
reports [16,24] claim using huge page may incur
performance degradation and recommend disabling the
huge page mechanism.

To make the huge page actually useful, the efforts in [8,
23,24] propose the adaptive huge page allocation
approaches, which are application transparent and support
multiple page sizes (i.e., enabling small page or huge page
accordingly). Now, Linux uses the Transparent Huge Pages
(THP) mechanism, which allocates a 2MB huge page for
every memory request and enables compaction operation if
there is no contiguity memory space for the huge page
allocation. However, compaction routine often fails and
brings nothing benefits but overheads. Going with frequent
latency spiking brought by compactions [1–3], THP also
cannot avoid the low utilization problem for huge pages.
And, memory bloating caused by enabling huge page may
waste a large amount of memory, leading to swapping data
with the hard disk, especially in the cases, where memory
resource is not ample.

--

 Lei Liu is the corresponding author (lei.liu@zoho.com;
liulei2010@ict.ac.cn). This project is founded in Sys-Inventor Lab led by
Lei Liu. Part of the technique in this paper is based on Lei Liu’s previous
work “Going Vertical in Memory Management” [19] in ISCA-2014 (the
corresponding author is Lei Liu).

--

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
APSys '19, August 19–20, 2019, Hangzhou, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6893-3/19/08…$15.00
https://doi.org/10.1145/3343737.3343745

 In this paper, we believe that making OS aware of huge
page utilization is necessary for cloud environments. For
example, database workloads often perform poorly with
huge pages, because they tend to have sparse rather than
contiguous memory access patterns. If OS always allocates
huge pages for such sort of workloads, the memory
utilization will become very low and might lead to
expensive swapping operations. To our knowledge, even
the studies have the idea of using multiple page sizes
according to the memory system’s current status and
workloads patterns, e.g. the efforts in [8], it is still a
fundamental problem for OS to understand the huge page
utilization, and thereby adapting memory policies
accordingly becomes difficult in reality.
 Towards this end, we design a practical OS-level
monitoring tool (SysMon-H), which is capable of capturing
the huge page utilization with low overhead at runtime for
cloud workloads. SysMon-H is the first work that combines
TLB monitoring and page-table walks to achieve both high
accuracy and low overhead for monitoring huge pages. And,
we propose H-Policy as a new memory policy for huge
page management in OS. The sampling results from
SysMon-H can be used by H-Policy to enable appropriate
memory management policies, e.g., splitting huge pages
into small ones or promoting base pages to huge pages. H-
Policy and SysMon-H work cooperatively in OS kernel.

2 BACKGROUNDS AND MOTIVATION
Linux kernel supports using huge pages since the version
2.6 (e.g., Debian since 2.6.32)1. There are two ways of
enabling the huge pages in Linux: (1) using hugetlbfs [1, 4],
people can reserve a large number of memory pages with a
consecutive physical address for huge page allocations.
However, this approach is not flexible, as the reserved
pages can only be used for huge page allocations; (2) THP
can transparently allocate huge pages without the human
involvements. On a system with THP, when a page fault
occurs, THP tries to find a block with 512 contiguous
physical pages (2MB) in buddy system [5,11]. However, as
system ages, there will be lots of fragments in memory
space, thus THP has to enable the time-consuming memory
compactions to create a huge page (2MB contiguous pages)
[23]. In extreme cases, where the compaction operation
fails due to the unmovable pages, THP has to merely return
a basic 4KB page with a long latency. The latest work in
[24] skips the hybrid page blocks (those blocks with

1 Linux now supports 2MB and 1GB huge pages. In this paper, we use 2MB

huge pages in our experiments. The term huge page refers to 2MB huge page.

unmovable pages) during the compactions, therefore
reducing the allocation latency. [16] proposes an
asynchronous allocation to create contiguous memory
spaces for huge pages, thus reducing the overhead brought
by compactions.
 In addition to prior work, we have the following insights
into huge page management. (1) It will be necessary to
make OS aware of the huge page utilization at runtime, as
memory bloating always wastes a large amount of memory.
In the cases where memory is limited, OS needs to split the
huge pages with lower utilization into small pages, and then
other applications can use them. The existing work does not
discuss this topic in details. (2) OS should have a flexible
memory mechanism and adapt the appropriate policy
according to the workloads’ patterns and memory system’s
status at runtime. In this work, we try to answer two
questions: can we have a new memory policy for huge
page management? How to make OS aware of the huge
page utilization in a low overhead?

3 MONITORING THE HUGE PAGE
UTILIZATION

To address the above-mentioned questions, the first step is
to design a practical OS kernel-level module for capturing
the memory pages’ utilization (including both of the Huge
2MB and base 4KB pages). We use Linux with the kernel
version 3.16 in our experiments, and our experiment
platform is with an Intel Nehalem i7-2.8GHz CPU (with
512 TLB entries for Huge pages) and 32GB main memory.

3.1 SysMon-H
Many previous studies [17,19,21,25,26] periodically check
the access_bit in PTEs (Page Table Entry) to monitor the
temperature (i.e., access frequency) of the memory pages.
However, with the increasing of memory footprint,
frequently checking the access_bit is not cost-effective. For
example, in our experiment with Redis, the sampling
overhead achieves 6 seconds in a specific sampling window
when memory footprint is around 20GB, affecting the user
experience in practice. Obviously, we need a new approach
for monitoring the cloud workloads.

In this paper, we design SysMon-H, an OS module
(enhanced from [13,19,28]) to collect the number of TLB
misses for huge pages instead of merely relying on
access_bit. The core idea of SysMon-H is from the
observations that the cold pages (rarely accessed pages)
have only a small number of TLB misses; In contrast, hot
pages usually incur a large number of TLB misses, as they
are frequently required to be loaded into TLB. For a progr-

APSys’19, August 19-20, 2019, Hangzhou, China Xinyu Li, Lei Liu, Shengjie Yang, Lu Peng, Jiefan Qiu

-am with a large working set, hot pages will be swapped
in/out of the TLB repeatedly, thus by monitoring the
number of TLB misses, SysMon-H can obtain the
distribution of memory accesses for the huge pages in the
entire memory address space. Usually, a high number of
TLB misses stand for a huge page with a high temperature
(“hot” huge page) and been touched frequently; in contrast,
a huge page with a low temperature might be considered
split into base pages (4KB pages) to mitigate the memory
bloating problem. Our approach is reasonable, because
TLB has a limited number of entries and it employs a hash
function based replacement algorithm to prevent the side-
channel attack from TLB, thus each page’s TLB entry has
the almost equal opportunity to be swapped out [15].

Previous work [13] can merely obtain the overall
number of TLB misses for a specific application. In our
design, by attaching a shadow array in application’s VMA,
SysMon-H can obtain the distributions of TLB misses in
the application’s address space at runtime, and can have the
per huge page-level TLB misses consequently. To our
knowledge, SysMon-H is the first work that can get such
kind of the information at OS level.

 We show the sampling results using SysMon-H for
Memcached, Redis, deepsjeng_r and mcf_r in SPEC CPU
2017. Figure 1 shows the results of the number of TLB
misses for the 4 applications in their address spaces, in a 5
seconds sampling window. SysMon-H can capture the hot
regions that consist of the frequent accessed huge pages
whose TLB misses are high, and find out the cold regions
in which the huge pages are with a low number of TLB
misses, i.e., underutilized huge pages. For example, the
Memcached’s memory accesses spans a 4GB address space,
and most of the hot huge pages are mainly in the left half of
the address space; the distribution of hot huge pages of
Redis is uneven among its 22GB address space; mcf_r’s
memory accesses are in a 350MB range, and the result of
deepsjeng_r shows most of the pages are accessed without
a significant difference. Based on the SysMon-H’s
sampling results, huge pages are ranked according to their
TLB misses. The pages with a low number of TLB miss are
considered underutilized ones. SysMon-H records this
information at runtime.
 However, only considering the TLB misses might not be
enough. People may intuitively assume that some “very hot”

Figure 1: The number of TLB misses of Huge Pages for 4 applications in a 5-seconds sampling window.

Thinking about A New Mechanism for Huge Page Management APSys’19, August 19-20, 2019, Hangzhou, China

Figure 2: Workflow of SysMon-H.

Figure 3: H-Tree for Each Application.

pages might be kept in the TLB, and thus cause fewer TLB
misses as cold pages do. We conduct experiments to show
how many pages are in this category. In our experiments,
the pages whose TLB miss count is below 10 in the
sampling period (5s) are classified as cold pages, and we
further check their access_bits to discern whether they are
hot pages or not. Here “hot” refers to the pages that are
touched in 3 consecutive scan intervals (1s). The
experimental results show that pages belong to this
category exist, but the number of them is not high. With
respect to our benchmarks, this special category of pages
accounts for below 0.44% of the pages that are classified as
cold ones in general. The preliminary results are basically
consistent with the claim in [15]. More experimental results
will be reported in future extension articles.
 Moreover, besides the huge pages, SysMon-H can also
collect the similar information for the base 4KB pages.
More design details are in following sections.

3.2 The Design Details of SysMon-H
In this section, we show more design details of SysMon-H
and its interaction with other OS components. Figure 2
shows the overall idea of SysMon-H. It has two phases. In
Phase 1, SysMon-H captures the access patterns by
monitoring the number of TLB misses primarily, and
further checks the access_bit for those cold regions to find
out these “very hot” huge pages (phase 2). The rest of the
pages are those with low utilization. SysMon-H works as
an OS module for long-running servers, and periodically

performs sampling for every 30 seconds (collect
information for 5 seconds) in our prototype.
 We design the prototype of SysMon-H based on the
Linux kernel with version 3.16. SysMon-H collects the
information for each application one by one. For a specific
application, it collects the TLB misses for its pages for 5
seconds, and then finds out the hot and cold regions; For
these cold regions, SysMon-H further checks the access_bit
in these huge pages’ PTE for three times, each of which is
with a 1-second interval. If the access_bit is 1 (i.e., touched)
for two times, SysMon-H will mark the page as hot,
otherwise, it will be marked as a cold one. SysMon-H
monitors the huge pages and the base 4KB pages.
 For a specific application, SysMon-H constructs an H-
Tree for every application, and sorts its huge pages
(denoted by Page_Struct) in H-Tree according to the
number of TLB misses. The core data structure of H-Tree
is the binary sort tree, and each application has its own H-
Tree. The huge pages with more TLB misses (and the
pages are classified as “very hot” in phase 2) will be
considered the high utilized ones. In our prototype, the
watermark high_tlb is defined as 50, indicating that for a
specific page whose number of TLB misses achieve 50 will
be considered a page with high utilization.

Illustrated in Figure 3, we show how the outputs from
SysMon-H are organized. Using the H-Tree, with the
watermark high_tlb as the root, pages are organized
according to their access frequency for each application.
The underutilized pages are located in the left part of the
tree, thus OS can easily find these huge pages with low
overheads. H-Tree has its application’s total number of
TLB misses during a specific sampling interval (i.e., 30
seconds in our prototype). If the memory bloating is serious,
our approach will select the application whose H-Tree has
the least number of the TLB misses and then starts to split
its underutilized huge pages (i.e., the nodes in the left part
of its tree). More details are in section 4. Note that the
constants in our design (e.g., watermark, sampling interval,
and etc.) are empirical values based on the analyses of
programs from cloud and SPEC CPU 2017 applications.

APSys’19, August 19-20, 2019, Hangzhou, China Xinyu Li, Lei Liu, Shengjie Yang, Lu Peng, Jiefan Qiu

These values can be adjusted as necessary in the conditions
of environmental changes.

3.3 The Sampling Overheads
We show the overheads brought by SysMon-H. As its
sampling routine has two phases, we conduct a two-stepped
experiment to show the advantage of it.
 Step-1: We compare the overheads caused by SysMon-
H (mainly relies on monitoring TLB misses) to the
approach that only samples the access_bit [21,26] for the
workloads Redis and mcf_r in SPEC CPU 2017. Our
experimental results show that sampling access_bits (i.e.,
employing 200 loops during a sampling window) for mcf_s
several hundred huge pages merely brings 0.19% overheads.
In contrast, monitoring TLB misses for mcf_r brings 0.14%
overheads in our experiment, which is lower than only
monitoring access_bit.
 As mcf_r in SPEC CPU 2017 has a below 1GB memory
footprint, accounting for at most 500 2MB huge pages, the
sampling overheads of the two approaches are not
significant.
 In contrast, for the cloud workload, which has a large
number of huge pages, and often exhibits the random-like
and irregular memory access patterns, monitoring TLB
misses for it will not incur unnecessary overheads such as
monitoring access_bit does (even for finding out a small
number of randomly touched hot pages, monitoring
access_bit has to frequently scan the entire address space).
In the case of Redis with 22GB memory footprint on server
side, our experimental results show below 0.1% sampling
overheads caused by monitoring TLB misses on the Redis
server (i.e., the client will not have obvious latency when it
access the Redis server), while in contrast, only sampling
access_bit brings 2.3% overheads, which may affect the
user experience. Redis has the largest memory footprint in
our experiments (illustrated in Figure 1), thereby we think
the experimental results could be representative.
 Step-2: We compare the overheads brought by handling
the corner cases. As illustrated in Figure 2, SysMon-H
needs to find out these “very hot” pages that are with a low
number of TLB misses in its second phase from those
pages that were once classified as cold. As SysMon-H
knows these pages are primarily cold ones, it only checks
them for 3 times (with 1-second intervals). Nevertheless,
the prior approaches [21,26] do not have such knowledge
and have to frequently check every huge page for capturing
the access frequency, even for these are cold ones.
Tracking every huge page in address space in this way
without any distinctions brings significant overheads in
reality, especially for the cloud computing workloads,

whose memory footprints are very high. Our experimental
results show that SysMon-H reduces this sampling
overhead to around 1/20 in Step-2.

4 THE ART OF H-POLICY DESIGN
SysMon-H works as a kernel module in OS to obtain the
memory pages’ utilization, guiding the memory
management mechanism (i.e., H-Policy). In this section, we
introduce H-Policy, which leverages the knowledge
provided by SysMon-H and manages the huge pages
accordingly. The H-Policy design has the following key
rules.
 (i) H-Policy allows splitting the huge pages that are with
low utilization into base 4KB pages according to the
current memory status. H-Policy uses a watermark, i.e.,
high_pressure (90%), to denote the amount of allocated
memory in the system. When the allocated memory amount
achieves 90%, H-Policy starts to aid the memory bloating
by splitting the huge pages that are with low utilization. At
the first step, it chooses the application that has the lowest
overall TLB misses (i.e., the application that has a
relatively lower number of TLB misses); then, for the
application, H-Policy splits the huge pages with the low
number of the TLB misses (i.e., the huge pages are with
low utilization) by referring to the application’s H-Tree.
After splitting a huge page, the freed base pages (marked
by explicit hints) return to buddy system. As mentioned
before, all of the required information is in this tree in
Figure 3.
 (ii) H-Policy will promote the base 4KB pages that have
a high number of TLB misses in a consecutive 2MB
memory space to a huge page. As mentioned before, hot
pages often cause a high number of TLB misses. H-Policy
has another watermark, i.e., promote_space (90%),
indicating that 90% of the 4KB pages in a specific 2MB
space are with a high number of TLB misses, and H-Policy
should promote this 2MB space to a huge page. In our
design, H-Policy promotes pages in every 30 seconds.
During this process, H-Policy migrates pages and compacts
data for creating a consecutive 2MB physical space with a
linear mapping to the 2MB virtual space. H-Policy uses the
OS page migration and data compaction primitives in
Linux kernel. More details can be found in [1,4].
 (iii) Preserving order-9 slab in buddy system for huge
page allocations. H-Policy is design based on the Linux’
buddy system [5,18], which has 11 free page lists organized
by slabs with orders ranging from 0 to 10, and each list
with an order R organizes pages in blocks that have 2R
continuous 4KB physical pages. Upon a memory allocation

Thinking about A New Mechanism for Huge Page Management APSys’19, August 19-20, 2019, Hangzhou, China

request, one larger block with a higher order can be split
into smaller blocks of lower orders when there are not
sufficient free pages in lower order slabs. For example, an
order-9 block that has 512 (29) 4KB pages can be split into
10 blocks with 256 (order 8), 128, 64, 32, 16, 8, 4, 2 pages
and two blocks with only one page, respectively. The split
blocks are linked to slabs with smaller orders. In reality,
large blocks are split quickly, and thus OS has lots of
external memory fragments. In such cases, allocating huge
pages (2MB with 512 4KB pages) becomes either time
consuming due to memory compaction or impossible. In
our design, H-Policy does not split the blocks in the order-9
slab for 4KB page allocations unless pages in other order
slabs are all allocated (i.e., delaying splitting the blocks that
can be directly used for allocating huge pages). Doing in
this way, H-Policy can potentially have more 2MB blocks
for huge page allocations in 29 free list, and OS can allocate
a huge page in constant time without other unnecessary
operations, e.g., breaking the large blocks or data
compactions. This approach can also prevent the 2MB
blocks in OS from being split quickly.
 (iv) H-Policy will aggressively create large physical
memory blocks by merging the adjacent small page blocks,
in the cases where OS has a large number of fragments. H-
Policy tries to migrate fewer pages for creating the large
blocks, as enabling page migration in Linux kernel may
incur performance slowdown. In our design, H-Policy
tracks the “holes” in physical memory by using counters in
the buddy system’s slabs and is able to have large blocks
by removing the relatively small holes in memory address
space via the page migration operations (large holes bring
more page migration overheads). Moreover, H-Policy has
the interface to tune its performance.
 Note that the watermark and other parameters in our
prototype can be modified according to specific needs. In
our design, H-Policy is orthogonal with the existing buddy
system in Linux kernel.

5 CONCLUSIONS AND FUTURE WORK
In this paper, we show SysMon-H, an OS kernel-level
monitoring module, which can capture the utilization of
huge pages by combining both TLB monitoring and PTE
sampling. With the help of SysMon-H, OS is able to make
better use of huge pages. Our experimental results show
that SysMon-H works well and brings low overheads.
Furthermore, we propose H-Policy, a new memory policy
for huge page management. With H-Policy, OS splits the
underutilized huge pages for mitigating the memory
bloating and promotes base pages to huge pages for

performance, adaptively. And, as system ages, H-Policy
can potentially have fewer memory fragments than original
Linux kernel as it preserves 2MB contiguous blocks in
buddy system for huge page allocations. SysMon-H and H-
Policy work together in our design.
 Our future work includes: (1) developing an efficient
memory compaction approach and a page migration
mechanism for reducing the data migration overheads, and
therefore can further improve the overall system
performance; (2) designing a dedicated memory framework
to efficiently supports a certain type of workload; (3)
deploying H-Policy on platforms using NVM, and merging
new NVM techniques together [29,30]; (4) besides the
memory management mechanism, we would like to study
the impact on operating system’s core components, e.g., FS
and I/O [31-33], on emerging systems with large memory
capacity. We hope our work could provide a valuable
reference for future related studies.

ACKNOWLEDGEMENT
We thank the reviewers for their valuable comments. This
project is supported by the National Key Research and
Development Program of China under Grant No.
2017YFB1001602 and the NSF of China under Grant No.
61502452. Xinyu Li and Shengjie Yang are student
members in Sys-Inventor Lab supervised by Lei Liu.

REFERENCES
[1] Performance Tuning: HugePages In Linux.

https://blog.pythian.com/performance-tuning-hugepages-in-
linux.

[2] Recommendation for disabling huge pages for Redis.
http://redis.io/topics/ latency.

[3] Recommendation for disabling huge pages for
MongoDB.https://docs.mongodb.org/manual/tutorial/transpar
ent-huge-pages.

 [4] Tales from the Field: Taming Transparent Huge Pages on
Linux. https: //www.perforce.com/blog/tales-field-taming-
transparent-huge-pages-linux.

 [5] http://en.wikipedia.org/wiki/Buddy_memory_allocation.

 [6] https://en.wikipedia.org/wiki/Memcached.

 [7] N. Agarwal and Thomas F. Wenisch, Thermostat: Application
transparent page management for two-tiered main memory. In
ASPLOS, 2017.

 [8] R. Ausavarungnirun, et al, Mosaic: a GPU memory manager
with application-transparent support for multiple page sizes.
In Micro, 2017.

 [9] A. Awad, et al, Avoiding TLB shootdowns through self-
invalidating TLB entries. In PACT, 2017.

APSys’19, August 19-20, 2019, Hangzhou, China Xinyu Li, Lei Liu, Shengjie Yang, Lu Peng, Jiefan Qiu

 [10] A. Basu, et al, Efficient virtual memory for big memory
servers. In ISCA, 2013.

 [11] D. P. Bovet and M. Cesati, Understanding The Linux Kernel.
O’Reilly Media, Inc. 2005.

 [12] J. Corbet, Memory compaction.
https://lwn.net/Articles/368869/.

 [13] J. Gandhi, et al, BadgerTrap: a tool to instrument x86-64
TLB misses. In ACM SIGARCH Computer Architecture
News (CAN), 2014.

 [14] J. Gandhi, et al, Efficient memory virtualization: Reducing
dimensionality of nested page walks. In Micro, 2014.

 [15] B. Gras, et al, Translation Leak-aside Buffer: Defeating
Cache Sidechannel Protections with TLB Attacks. In
USENIX Security, 2018.

 [16] Y. Kwon, et al, Coordinated and efficient huge page
management with ingens. In OSDI, 2016.

 [17] S. Lee, et al, CLOCK-DWF: A writehistory-aware page
replacement algorithm for hybrid PCM and DRAM memory
architectures. In IEEE TC, 2014.

 [18] L. Liu, et al, A software memory partition approach for
eliminating bank-level interference in multicore systems. In
PACT, 2012.

 [19] L. Liu, et al, Going Vertical in Memory Management:
Handling Multiplicity by Multi-policy. In ISCA, 2014.

 [20] L. Liu, et al, Memos: A full hierarchy hybrid memory
management framework. In ICCD, 2016.

 [21] L. Liu, et al, Rethinking Memory Management in Modern
Operating System: Horizontal, Vertical or Random? In IEEE
TC, 2016.

 [22] O. Mutlu, More than Moore Technologies for Next
Generation Computer Design. Springer, Chapter Main
Memory Scaling: Challenges and Solution Directions, 2015

 [23] J. Navarro, et al, Practical, transparent operating system
support for superpages. In OSDI, 2002.

 [24] A. Panwar, et al, Making Huge Pages Actually Useful. In
ASPLOS, 2018.

 [25] M. Xie, et al, SysMon: Monitoring Memory Behaviors via
OS Approach. In APPT, 2017.

 [26] X. Zhang, et al, Towards practical page coloring-based
multicore cache management. In EuroSys, 2009.

 [27] Y. Zhang, et al, Mojim: A Reliable and Highly-Available
Non-Volatile Memory System. In ASPLOS, 2015.

 [28] H. Zhao, et al, Bandwidth and Locality Aware Task-stealing
for Manycore Architectures with Bandwidth-Asymmetric
Memory. In ACM TACO, 2018.

 [29] L. Liu, et al, Hierarchical Hybrid Memory Management in
OS for Tiered Memory Systems. In IEEE TPDS, 2019.

 [30] S. Chen, et al, Efficient GPU NVMRAM Persistence with
Helper Wraps. In ACM/IEEE DAC, 2019.

 [31] H. Liu, et al, HMFS: A hybrid in-memory file system with
version consistency. In JPDC, 2018.

 [32] F. Lv, et al, Dynamic I/O-aware scheduling for batch-mode
applications on chip multiprocessor systems of cluster
platforms. In JCST, 2014.

 [33] F. Lv, et al, WiseThrottling: a new asynchronous task
scheduler for mitigating I/O bottleneck in large-scale
datacenter servers. In J. of Supercomputing, 2014.

Thinking about A New Mechanism for Huge Page Management APSys’19, August 19-20, 2019, Hangzhou, China

